CHEM 180: Chemical Reactivity I The purpose of this syllabus is to describe the course, resources, and policies. It is meant to help all students understand the expectations and requirements for the course, and it should be used as a reference for questions about policies. When updates to the syllabus are made during the term, a new version will be posted electronically, and all students will be notified. ## **Course Information** Course: Chemistry 180 - Chemical Reactivity I (3 credits: Lecture & Discussion) **Prerequisites:** Completion of Math 118 and Chem 160, or the equivalent, with a grade of C- or better. **Note:** students with prior credit for CHEM 101/102 (instead of CHEM 160) must take CHEM 195 as a co-req with CHEM 180. A student missing a co- or prerequisite may be withdrawn at any time. Time Zone: This syllabus lists dates/times using Chicago local time (U.S. Central Time Zone) Lectures: Section 006, TuTh 11:30am-12:35pm, Life Science Building - Room 142 **Discussions:** You must attend the section for which you registered: - Section 007: Mondays 9:20am-10:10am, Flanner Hall 105 - Section 008: Mondays 10:25am-11:55am, Flanner Hall 105 - Section 009: Mondays, 11:30am-12:20pm, Flanner Hall 007 **LOCUS Course Description & Outcomes:** Lecture and discussion course designed to create foundational knowledge and proficiency in essential chemistry concepts and skills. Topics include acids and bases, buffers, chemical equilibrium, molecular thermodynamics and kinetics, nucleophilic substitutions, elimination reactions, carbonyl compounds and reactions with applications to biochemical pathways. Students will use qualitative and quantitative representations of matter to describe, explain, and predict how molecular structure and stability changes over time in chemical reactions. ## Course Coordinator: Dr. Sandra Helquist (Ph.D.) shelquist@luc.edu Chemistry 180 is a multi-section lecture & discussion course with common content and common outcomes across all sections. This course includes a Common Final Exam during the Common Final Exam Period as scheduled by the University. The Course Coordinator is responsible for consultation and coordination with instructors regarding policies, exam writing, and grading. Your Section Instructor is responsible for communicating with you regarding all course content and policies and is the first and primary person you should contact with questions about all aspects of the course. As needed, all Section Instructors will consult with the Course Coordinator throughout the semester. ## **Instructor Information** | Section instructor | Di. Nebecca Haley (Fil.D.) | | | | | |---------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--| | Offices: shared office suite | Flanner Hall 200-A | | | | | | Email Policy: Direct all emails to rhaley@luc.edu with "CHEM 180-006" as the subject line. Send emails | | | | | | | from your Loyola email account. Doing this will ensure that your emails are read, and in most cases I will be | | | | | | | able to respond within 24 hours Monday-Friday when classes are in session. You are encouraged to use | | | | | | | Office Hours to get immediate answers to your questions, and to use your classmates as resources for help. | | | | | | | You are welcome to email me in the evenings/nighttime, and you can expect a response sometime during | | | | | | | the next day. | | | | | | **Office Hours Policy:** You are welcome to stop by at any time to see if my door is open and check the posted schedule. Extra hours or changes to hours will be announced in class. For regular OH, just show up!! Bring your questions anytime during the times listed. Bring a classmate with you or meet your classmates there to work together & get feedback & help. Office Hours Schedule: full schedule will be posted and updated on <u>Sakai</u> Resources for Help Section Instructor - In the Flanner 200 office suite: - Tues 9a-10a - Wed 1:30p-3:30p - Thurs 9:30a-10:30a Dr. Rehecca Haley (Ph.D.) - Zoom: Sun 6:30p-7:30p **see note** - Short, individual appointments via Sakai Sign-up page in advance ^{**}I'll be monitoring by email for notifications when someone joins, so if I'm not there immediately, don't leave!** #### SI Information There are Supplemental Instruction (SI) study sessions available for this course. SI sessions are led by an SI leader, Kelly, who is a student that has recently excelled in the course. Session attendance is open to all, and while it is voluntary, it is extremely beneficial for those who attend weekly. Times and locations for the SI session can be found here: www.luc.edu/tutoring. Students who attend these interactive sessions find themselves working with peers as they compare notes, demonstrate and discuss pertinent problems and concepts, and share study and test-taking strategies. Research shows students who regularly attend sessions have higher grades at the end-of-the-semester and more deeply understand course concepts than those who do not. Students are asked to arrive with their Loyola ID number, lecture notes, and textbook. # **Required Course Materials** - WileyPlus, see <u>Sakai</u> for additional information and recommendations - Molecular Model Kit (Duluth Labs MM-005 or equivalent) - Scientific Calculator (non-programmable, non-graphing, and independent of another device such as a phone or tablet) - Loyola Sakai course management site: <u>sakai.luc.edu/portal/</u> and tools integrated into the site, including <u>Gradescope</u>. Additional resources, advice, and suggestions for success (from multiple sources) will be posted/updated on Sakai. - Loyola email: messages are sent to the entire class via Sakai, linked to your Loyola email account - Additional web-based and/or software systems will be used for uploading your work and facilitating feedback and evaluation. These may include collaboration materials for group work. # Copyright/Intellectual Property reminder Course materials provided by your instructors at Loyola, including my materials, may not be shared outside any course without the instructor's <u>written permission</u>. Content posted without permission will be in violation of Copyright/Intellectual Property laws. Class meetings may not be recorded without the instructor's <u>written permission</u>. # Learning Learning will be assessed as described in the Grading System information found later in this syllabus. **Description:** This course is the second in a sequence of multiple chemistry courses designed to create foundational knowledge and proficiency in essential chemistry concepts and skills. It includes the following topics: acids and bases, buffers, chemical equilibrium, molecular thermodynamics and kinetics, nucleophilic substitutions, elimination reactions, carbonyl compounds and reactions with applications to biochemical pathways. Historical and current developments in chemistry as well as real-world problems that chemists address are incorporated into the course. Alongside specific content, these themes will cycle through each of the foundational courses. They include: - Structure-Activity Relationships - The culture and practice of science. - Energy. - Polymers, proteins, and macromolecules. - Sustainability. - Chemical synthesis, purification, characterization, and analysis. **Outcomes:** The emphasis of this course is on understanding, prediction, investigation, explanation and evaluation over memorization. This means that students must foster their problem solving skills, ability to make claims based on evidence, use and understanding of models and their limitations, and skills of effective communication of scientific results. It is not enough to know *what* happens in chemistry, the student must also be able to explain *why* it happens. When successful, a student will be able to: - Qualitatively and quantitatively describe and explain how molecular structure and stability changes over time in chemical reactions. - Draw and interpret multiple representations of structures depicting reactivity. - Predict and draw reaction products. - Propose and draw logical reaction mechanisms. - Quantify relationships between variables controlling chemical systems. - Differentiate among closely related factors, categorize problem types, and select appropriate tools to solve these problems. Apply chemical principles to explain natural phenomena. # **Academic Integrity** Academic integrity is the pursuit of scholarly activity in an open, honest, and responsible manner. Academic integrity is a guiding principle for all academic activity at Loyola University Chicago, and all members of the University community are expected to act in accordance with this principle. Please open and read the foldout for the third item, "Academic Integrity" in the <u>Undergraduate Academic Standards and Regulations.</u> Academic dishonesty can take several forms, including, but not limited to cheating, plagiarism, copying another student's work, submitting false documents, and deliberately disrupting the performance of other class members. Standards apply to both individual and group assignments. Regarding the use of Artificial Intelligence: our Provost has expressed to "Let us all make sure we are learning and sharing best practices and not allowing AI to do the learning for us." In this course, any work you submit for credit must represent your own ideas and understanding of the assigned material. If you are uncertain about any case where your use of AI may be in conflict with University or course standards, please see me to discuss your concerns. An instance of academic misconduct (including those detailed on the website provided above or in this syllabus) will be reported to the Department Chair and the academic Dean's office. You will receive a score of zero on the item in question for any instance of academic misconduct, and that score cannot be dropped. Repeated instances of misconduct may result in additional sanctions, including a grade of F for the course. ## **Attendance** # **Class Attendance & Course Coverage** Format and Coverage: During every class, we are going to work together on practice problems. Working out your own thought process with the support of your instructor and peers is one of the best ways to retain the information presented to you (as opposed to simply listening to your instructor lecture). To best prepare you for doing these practice problems in class, you will have required pre-lecture homework assigned and continually updated in WileyPlus. These assignments will navigate you to the content we are covering so you can have the background information needed for the problems we do in class. Take notes while you are doing this pre-work and practice active reading strategies (click the link for examples)! Please note that we are covering the course topics in a more traditional (structure-first) order compared to how topics are listed in your textbook. Post-lecture Highly Recommended problems for additional daily practice will be continually updated online. We will not cover every topic in every chapter of the textbook this semester. Focus first on the material that is directly covered in lecture and assigned or recommended. Explore the additional material in the textbook for your own interest and enrichment. Attendance: Numerous studies have found that class attendance is a positive predictor of course grades. In other words, if you don't skip class, you have a better chance of retaining the course information, which should translate to a higher grade. You will also have the chance to introduce yourself to multiple classmates early in the course. Use these introductions and connections with classmates to create additional support for the course. Our actual pace may vary from the tentative schedule: if you miss a class for any reason, it is your responsibility to work through the content. Contacting a classmate for further discussion of the topics is highly recommended, especially if you miss class, as you are still responsible for all material covered and assigned. There will be no published lecture notes. Slides/handouts/links/animations and other additional resources will be shared on Sakai. Outside of class, please check Sakai daily for updated resources and/or announcements. We have a Universal Absence Accommodation Policy. Please refer to this with the Grading System. 1. Kassarnig, V.; Bjerre-Nielsen, A.; Mones, E.; Lehmann, S.; Lassen, D. D. PLoS One 2017, 12, e0187078. # **Classroom & Group Work Guidelines** The classroom is a space designed for learning. My expectations are that all voices will be heard and appreciated in the classroom, and that we will invite each other to engage while recognizing that contributions can take multiple forms. You will write expectations/guidelines for your group work this semester: this will be an essential part of the course. #### **Student and Faculty Expectations** I expect you to take ownership of your learning and to use office and SI sessions as learning resources to help you reach your desired level of achievement in the course. For this course, it is anticipated that the average independent working time (outside of class) required to learn the material in order to achieve a minimal passing grade of C- is 1-2 hours per day, every day, but your needs will also vary depending on your prior knowledge and ability to master cumulative concepts in the course material as the semester progresses. What can you expect of me? My primary objectives are to provide you with the tools, environment, encouragement, and support to learn Chemistry. Because the course objectives are based on what students will learn, my teaching techniques include the use of pre-lecture homework, active learning and metacognition, to help you maximize your learning. I expect that all of us will work together and demonstrate mutual respect! # **Accommodations for Religious Observances** If you have observances of religious holidays that will cause you to miss class or otherwise effect your academic work in the course you must alert the instructor <u>no later than Friday of Week 2 in the semester</u> to request accommodations. Advance notice must be sent to the instructor through Loyola email by this deadline. # Loyola University Absence Policy for Students in Co-Curricular Activities (including ROTC) Students missing classes while representing Loyola University Chicago in an official capacity (e.g., intercollegiate athletics, debate team, model government organization) shall be allowed by the faculty member of record to make up any assignments and to receive notes or other written information distributed in the missed classes. Students should discuss with faculty the potential consequences of missing lectures and the ways in which they can be remedied. Students must provide their instructors with proper documentation i.e., "Athletic Competition & Travel Letter" describing the reason for and date of the absence. This documentation must be signed by an appropriate faculty or staff member and it must be provided to the professor in the first week of a semester. It is the responsibility of the student to make up any assignments. If the student misses an examination, the instructor is required to allow the student to take the examination at another time. (https://www.luc.edu/athleteadvising/attendance.shtml) Students who will miss class for an academic competition or conference must provide proper documentation to their instructor as early in the semester as possible. Advance notice must be sent to the instructor through Loyola email. # Information about Accessibility Support #### **Student Support: Requests for Accommodation** Loyola University Chicago provides reasonable accommodations for students with disabilities. Any student requesting accommodations related to a disability or other condition is required to register with the Student Accessibility Center (SAC). Professors will receive an accommodation notification from SAC, preferably within the first two weeks of class. Students are encouraged to meet with their professor individually in order to discuss their accommodations. All information will remain confidential. Please note that in this class, software may be used to audio record class lectures in order to provide equal access to students with disabilities. Students approved for this accommodation use recordings for their personal study only and recordings may not be shared with other people or used in any way against the faculty member, other lecturers, or students whose classroom comments are recorded as part of the class activity. Recordings are deleted at the end of the semester. For more information about registering with SAC or questions about accommodations, please contact <u>SAC</u> at 773-508-3700 or <u>SAC@luc.edu</u>. If you use the Testing Center, please schedule all of the tests for this class at the beginning of the semester. If a scheduled test date changes, you will still be accommodated if you had scheduled your test in advance. If you have any questions or concerns regarding the implementation of your accommodations in this course, please contact the SAC for assistance. #### Information about Title IX Please refer to the information at this link: Office for Equity & Compliance's recommended syllabus language ## Additional scheduling and dates information - A link to the official Loyola calendar can be found here: https://www.luc.edu/academics/schedules/ - The Withdraw deadline for the semester is on Friday, November 1 ## **Final Exam** The University sets the schedule for all final exams. The final will be held on: Thursday, December 12th, 7:00 PM in a classroom TBA (will be listed in LOCUS) You will have exactly 2 hours to complete the exam. Additional time will not be granted, even if you start late. There will be no make-up final exams given under any circumstance, and the exam will not be given early, either. Instructors may not reschedule final exams for a class for another day and/or time during the final exam period. There can be no divergence from the posted schedule of dates for final exams. Individual students who have four (4) final examinations scheduled for the same date may request to have one of those exams rescheduled. If a student reports having four final examinations scheduled for the same date, students should be directed to e-mail a petition to Adam Patricoski, Assistant Dean for Student Academic Affairs, CAS Dean's Office (apatricoski@luc.edu). ## Pass/Fail Conversion Deadlines and Audit Policy A student may request to convert a course into or out of the "Pass/No-Pass" or "Audit" status only within the first two weeks of the semester. For the Fall 2024 semester, students are able to convert a class to "Pass/No-Pass" or "Audit" through Monday, September 9th. Students must submit a request for Pass/No-Pass or Audit to their Academic Advisor. # **Department Course Repeat Rule** Effective with the Fall 2017 semester, students are allowed only THREE attempts to pass Chemistry courses with a C- or better grade. The three attempts include withdrawals (W). The Department advises that it is preferable to complete a course with a grade of C or C-, and to demonstrate growth in future coursework, than to withdraw from a course. After the second attempt, the student must secure Department approval for a third attempt. Students must fill out the <u>Permission to Register Form</u>, and arrange a meeting with the Undergraduate Program Director, Assistant Chairperson, or Chairperson in Chemistry. If approved, a signed copy of this form is then sent to the student's Advising office to secure final permission for the attempt. # Additional course material and recording statements In general lecture, meetings may be recorded. The following is a mandatory statement for all courses in the College of Arts & Sciences (CAS). We will discuss class norms and standards during the first week and continue the discussion as needed throughout the semester. #### Recording of online class meetings In this class software will be used to record live class discussions. As a student in this class, your participation in live class discussions will be recorded. These recordings will be made available <u>only</u> to students enrolled in the class, to assist those who cannot attend the live session or to serve as a resource for those who would like to review content that was presented. All recordings will become unavailable to students in the class when the Sakai course is unpublished (i.e. shortly after the course ends, per the <u>Sakai administrative schedule</u>). Students who prefer to participate via audio only will be allowed to disable their video camera so only audio will be captured. Please discuss this option with your instructor. The use of all video recordings will be in keeping with the University Privacy Statement shown below: #### **Privacy Statement** Assuring privacy among faculty and students engaged in online and face-to-face instructional activities helps promote open and robust conversations and mitigates concerns that comments made within the context of the class will be shared beyond the classroom. As such, recordings of instructional activities occurring in online or face-to-face classes may be used solely for internal class purposes by the faculty member and students registered for the course, and only during the period in which the course is offered. Students will be informed of such recordings by a statement in the syllabus for the course in which they will be recorded. Instructors who wish to make subsequent use of recordings that include student activity may do so only with informed written consent of the students involved or if all student activity is removed from the recording. Recordings including student activity that have been initiated by the instructor may be retained by the instructor only for individual use. #### Additional Content, Copyright & Intellectual Property Statement By default, students may not share any course content outside the class without the informed written consent of the owner of that content. This includes any additional recordings posted by students, materials provided by the instructor, and publisher-provided materials. For example, lectures, quiz/exam questions, book figures/slides, and videos may not be shared online outside the class. In some cases, copyright/IP violations may overlap with breaches of academic integrity. Remember that obtaining consent to share materials is an active process. # **Evaluation and Grading** # **Course Grading System Design** This course utilizes specification grading. In specification grading, students work to successfully master objectives on assessments (tests). In this course, we have two types of objectives: foundational objectives (FOs) and comprehensive objectives (COs). With this grading system, students can determine what overall grade they will attempt. Instructors outline the standards and requirements for each FO and CO in course material and practice problems. During a pre-determined assessment period, the instructor will give a specific list of FOs and COs that the students can attempt. Students choose which FOs and COs to attempt. Objectives that students get correct are considered mastered and count towards their overall grade. For those objectives not mastered, students should determine what was not correct. For many of the objectives, there will be additional attempts during the semester so students can reattempt mastery of that objective. There is no partial credit in this grading system. Specifications grading provides students the choice of what topics they are assessed during a particular testing period. The grading standards listed below provide the standards needed to obtain a particular grade. In this testing environment, students have the choice to strive for a particular grade, depending upon how many FOs and COs they master and homework/group work. Note: In this assessment system, student grades can only go up, they can never drop. Some notes in preparing for this grading system: - Understand the standards and requirements for each letter grade so <u>you choose</u> the level of academic achievement to pursue in this course. Strive for high achievement. We believe in the potential of all students to learn and improve their abilities in chemistry. - 2. Expect a <u>challenging but flexible</u> learning environment. The standards for demonstrating your Mastery of the course material are high in each area, but the methods for meeting the standards are designed to give you multiple chances to revise and improve the quality of your work throughout the semester. - 3. <u>Learn from mistakes</u>. Deep, connected learning involves hard work and reflection on your progress. Chemistry is a cumulative subject where new topics build on prior knowledge and this system is designed for cycles of learning. #### **Standards** The standards for each letter grade are listed here according to all required course components, listed in columns. You must meet or exceed all of the standards listed to earn the corresponding letter grade: standards are not averaged across components. These lists are intended for complete transparency: you do not need to do any extra work to figure out what is required for any grade, and we will revisit the standards and expectations after the early rounds of testing to help you gauge your progress in the course. Grades are only based on the criteria listed in the syllabus: no substitutions, and no additions. Descriptions of the components are found on the following pages. | | FO Mastery | CO Mastery | CO Total
(M+P) | Project | Homework / Group Work | |----|------------|------------|-------------------|---------|---| | A | ≥ 30 | ≥ 15 | 18 | A-spec | WileyPlus ≥ 90% AND ≤ 2
missed quizzes | | Α- | ≥ 28 | ≥ 13 | ≥ 17 | A-spec | WileyPlus ≥ 90% AND ≤ 2
missed quizzes | | B+ | ≥ 26 | ≥ 11 | ≥ 15 | B-spec | WileyPlus ≥ 80% AND ≤ 3
missed quizzes | | В | ≥ 24 | ≥ 9 | ≥ 13 | B-spec | WileyPlus ≥ 80% AND ≤ 3
missed quizzes | | B- | ≥ 22 | ≥ 8 | ≥ 11 | B-spec | WileyPlus ≥ 80% AND ≤ 3
missed quizzes | | C+ | ≥ 20 | ≥ 6 | ≥ 10 | C-spec | WileyPlus ≥ 70% AND ≤ 4
missed quizzes | | С | ≥ 19 | ≥ 5 | ≥ 9 | C-spec | WileyPlus ≥ 70% AND ≤ 4 missed quizzes | | |----|---|-----|-----|--------|--|--| | C- | ≥ 18 | ≥ 4 | ≥ 8 | C-spec | WileyPlus ≥ 70% OR ≤ 4 missed quizzes | | | D | ≥ 10 | ≥ 0 | ≥ 6 | - | WileyPlus ≥ 50% OR ≤ 6 missed quizzes | | | F | a student who fails to meet the standards for a grade of D will receive a grade of F for the course | | | | | | #### **Posting of Grades** Final course grades at the end of the semester are posted only on LOCUS. Final grades are never sent via email. WileyPlus scores are automatically recorded in the WileyPlus Gradebook for that system. Scores for all other required components will be made available on Sakai. Each student will see an estimated midterm grade in LOCUS before the withdraw deadline. #### **Course Assessment** All of the following are required components of your course grade: ## WileyPlus: Required Homework Registration information is on Sakai; use of this system includes eText access. The purpose of these assignments is to help you keep up with the course material by preparing ahead for each class. You will get as much benefit from these assignments as you choose to put forth in your effort to solve the problems on your own: a list of reading (textbook sections) will be continually updated to correlate with the WileyPlus pre-lecture assignments. Typically, you will have multiple required assignments per week, always due at 11:59pm, posted at least 24 hours in advance. Assignments will be submitted completely online with the individual grading policy listed with each assignment. Contact Wiley Support for help with technical aspects of using WileyPlus. Additional practice assignments will be posted that will not count toward the point total for your course grade. We do not offer extensions for missed WileyPlus assignments. The grading system automatically accounts for more than one missed assignment during the semester in the A-level standards. # **Group Quizzes** On average, 1 quiz per week, usually completed in assigned groups. Most assignments will be completed in class and submitted to Gradescope. The purpose of participation is to improve your learning by: 1) cooperation, communication and support among your classmates as you practice the skills required for success in the course; and 2) providing feedback on your progress to encourage reflection and improvement. Quizzes will include test questions from previous semesters. You will get as much benefit from these quizzes as you choose to put forth in your effort and you are expected to correct your work after receiving feedback. Each quiz will contribute equally toward this category in the grade standards. Refer to the Universal Absence Accommodation Policy for missed quizzes. ## Foundational Objectives (FOs): Mastery Testing The purpose of testing is to align your course grade with your level of learning, based on your mastery of Foundational Objectives (FOs). The FOs are all related to the Course Content & Learning Outcomes on the first page of this syllabus. A list of FOs will be updated for each unit as we progress through the material. Questions will be scored as Mastered or Not Mastered for each FO. A score of Mastered is earned for correctness and completeness of the problem(s), and each FO may only be counted once toward your FO Mastery Standard. You will have multiple chances to demonstrate mastery of all the FOs during the term: for example, if you receive a score of Not Mastered for any FO on the first test (or if you choose not to attempt an FO), you can try again to earn a score of Mastered for that FO on the second test. Revision of work that does not meet mastery standards is expected for your learning. Because you will have more than one chance to master the FOs, you will also be able to choose which FOs to work toward for the course. Note that the standards for earning Mastery will be high: by definition, there is no partial credit, but you will learn the standards from the examples for class activities. Rounds of testing are scheduled for 9/10, 10/1, 10/24, 11/14, 12/5, with an additional round scheduled during the final exam period. Specific FO lists and timing will be announced at least one week in advance. All procedures, allowed resources, and requirements will be posted before each round of testing. Refer to the Universal Absence Accommodation Policy for missed tests. ## Comprehensive Objectives: Mastery Testing & Proficiency Revisions The purpose of testing is to align your course grade with your level of learning, based on your mastery of comprehensive topics. The purpose of COs is to allow you to demonstrate your higher-level skills of applying and analyzing, requiring you to go beyond memorization of facts and processes and transfer your understanding of essential course concepts to new scenarios. The COs are all related to the Course Content & Learning Outcomes on the first page of this syllabus. A list of COs will be updated for each unit as we progress through the material. COs will be scored as Mastered or Not Mastered. A score of Mastered is earned for correctness and completeness of the problem(s). Note that the standards for earning Mastery will be high: by definition there is no partial credit, but you will learn the standards from the examples for class activities. Each round of testing on COs will be followed by an opportunity to resubmit work to earn a score of Proficient for an CO that was Not Mastered in the first testing opportunity. Resubmissions for Proficiency may also earn reattempts of COs. Reattempts may take place in later rounds of testing. Note that your grade will not count both Mastery and Proficiency for the same item; a CO that is scored Proficient and then is subsequently Mastered on a re-attempt will count only as being Mastered. Rounds of testing are scheduled for 10/1, 10/24, 11/14, 12/5, with an additional round scheduled during the final exam period. Specific CO lists and timing will be announced at least one week in advance. All procedures, allowed resources, and requirements will be posted before each round of testing. Refer to the Universal Absence Accommodation Policy for missed tests. #### **Project** Specifications and dates will be provided, beginning in Unit 2. All project components will include assistance from your assigned group. # **Universal Absence Accommodation Policy** The purpose of a universal absence accommodation policy is to account for emergency circumstances (e.g., serious illness, caring for a family member, car accident) that require you to be absent from class, while maintaining fairness in grading for students who attend and complete all in-class graded assignments. We believe that class attendance and participation are essential for your success in this class, and that your health is important to us and our shared community. Please use good judgement and stay home if necessary/prudent for your circumstances. This is the universal accommodation policy for in-class graded assignments: - Group Work: the specification for an A automatically accommodates 2 missed guizzes. - FOs: multiple attempts at Mastery are automatically provided during the term. - COs: you are eligible to submit for Proficiency after the first attempt at an CO whether you complete the problems or not; reattempts at Mastery may be available during the term. You may provide documentation for an absence, but it is not required. These accommodations are automatically available to all students. ## **Course Chapters List** We will not cover every topic in every chapter of the custom etext this semester, but the material will usually come from the Chapters listed below. Focus first on the material that is directly covered in classes and assigned or recommended. Explore the additional material in the textbook for your own interest and enrichment. Chapter 1: Introduction to Structure and Reactivity Chapter 2: Functional Groups and Bronsted-Lowry Acids and Bases Chapter 3: Introduction to Equilibrium Chapter 4: Acid-Base Equilibria and Buffers Chapter 5: Thermodynamics Chapter 6: Chemical Kinetics Chapter 7: Introduction to Reactions and Mechanisms Chapter 8: Nucleophilic Substitution Reactions and Elimination Reactions Chapter 9: Alkanes and Cycloalkanes Chapter 10: Stereoisomerism and Reactions Chapter 11: Introduction to Carbonyl Chemistry and Nucleophilic Addition Reactions Chapter 12: Carbohydrates Chapter 13: Carboxylic Acids and Their Derivatives: An Introduction to Nucleophilic Acyl Substitution Reactions Chapter 14: Lipids, Amino Acids and Peptides Changes to Syllabus There may be changes to the syllabus during the semester. You are responsible for all syllabus changes made in class whether or not you attend.